Applications of FT-MRR Spectroscopy for Impurity Identification and Quantification

Justin L. Neill, PhD
Chief Technology Officer
BrightSpec, Inc.

BrightSpec, Inc. | 770 Harris St. #104b | Charlottesville, VA 22903 | (434) 202-2391
FT-MRR Basics

Fourier Transform – Molecular Rotational Resonance

- Molecules have fingerprint rotational spectra based on 3-dimensional moments of inertia – isomers, conformers, and isotopologues resolved (Additional capabilities for enantiomers)

- Extremely selective – no false positives

- Spectra measured using FT technique (analogous to FT-NMR) that dramatically enhances sensitivity

- Analyte targets are:
 - *Volatile* – measurement is in low pressure gas phase
 - *Polar* – interaction is through permanent dipole moment
 - *Low weight* – <125 amu for room-temperature analysis, up to 500 amu using molecular beams

Simple relationship between ab initio electronic structure and spectra

Site-specific isotope resolution
BrightSpec

• Founded in 2012 to commercialize innovative technology from the University of Virginia. IP portfolio of 7 patents (UVa, Harvard, and BrightSpec-filed)

• Team of 10 full-time employees
 - 4 experts in FT-MRR technique
 - Complementary expertise in engineering, applications design, instrument design, software
 - Experienced management team

• Based in Charlottesville, VA

All products CE certified
21 CFR Part 11 compatible

BrightSpec FT-MRR One
BrightSpec Discovery Series
BrightSpec Chiral Broadband
I will present three examples of client-driven analyses where FT-MRR is being applied:

1) Quantification of residual solvent impurities in nutritional IV solutions, raw materials, and drug products

2) ID & quantification of a trace level mutagenic impurity in a drug product

3) Chiral purity monitoring of a continuous pharmaceutical synthetic process

Collaboration with B. Frank Gupton, Virginia Commonwealth University
Residual Solvent Analysis by FT-MRR

Residual solvent analysis (USP <467>):
- Pharmaceutical manufacturers must verify that residual impurities used in synthesis are at safe levels in their products – typically ppm sensitivity required (Class 2)

- Gas chromatography is standard, but simpler and faster methods are desirable if they can demonstrate equivalent performance

Client sent samples of a IV-administered nutritive solution with impurities of methanol, ethanol, and isopropanol they needed to quantify. Samples are also thermally unstable - a problem for GC.

FT-MRR Requirements:
- Unambiguously resolve analytes without chromatography
- Reach detection limits of 1 mg/L with <10% measurement accuracy
- Simpler, faster, and easier analysis than existing methods
Analytical Methods

Static Headspace FT-MRR

- Similar advantages as SHS-GC (concentration of volatiles; matrix simplification)
- Only consumable is nitrogen for cleaning
- Interfaces with autosampler

- Reference library used to find lines of each analyte without overlaps
- Method validity established by measuring stock solutions in concentration range 1-100 mg/L
- Regular blanks to confirm no carryover
- Accuracy maintained in customer’s sample matrix – demonstrated through spiked recovery analysis

FT-MRR Measurement Cycle

<table>
<thead>
<tr>
<th>Description</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evacuate vial</td>
<td>2 min</td>
</tr>
<tr>
<td>Inject solution and equilibrate</td>
<td>3 min</td>
</tr>
<tr>
<td>Transfer sample to measurement chamber</td>
<td>45 sec</td>
</tr>
<tr>
<td>Measure analytes</td>
<td>15 sec</td>
</tr>
<tr>
<td>Clean system</td>
<td>3 min</td>
</tr>
<tr>
<td>Total</td>
<td>9 min</td>
</tr>
</tbody>
</table>

Case Study 1: Routine analysis of residual solvent impurities

Case Study 2: Genotoxic impurities in a final drug product

Case Study 3: Chiral analysis during continuous manufacturing process
Method Results

Case Study 1: Routine analysis of residual solvent impurities

Case Study 2: Genotoxic impurities in a final drug product

Case Study 3: Chiral analysis during continuous manufacturing process

MDL:
- Methanol 0.2 mg/L
- Isopropanol 1.0 mg/L
- Ethanol 0.3 mg/L

Repeatability typ 10%

Linearity $R^2 > 0.99$
Mutagenic Impurity Analysis

- Policies outlined in ICH-M7 for the assessment and control of impurities that are potentially DNA reactive

- Can arise from raw material impurities, side reactions, or degradation – and may be described as a set of related structures, so structure characterization may be needed as well as quantification

- Low detection limits (<1 ppm) needed, with good quantification – challenge for method development

Client (Top 25 global pharma) provided formulated drug capsules with a known chloroethane impurity. Goal is to quantify chloroethane, as well as to learn other information about the samples using FT-MRR.

FT-MRR Requirements:
- Structure ID and quantification capabilities in one measurement
- Low detection limits
- Good reproducibility and accuracy
BrightSpec Thermal Evolution Method

- Heat dry powder in an evacuated headspace vial, followed by vacuum-driven transfer of headspace vapor into FT-MRR chamber for characterization

- Can perform broadband investigative analysis (including unknowns) or targeted analysis of known compounds

- At higher temperatures, degradation products can be generated as well as impurities (though oxygen-free environment prevents combustion)

- Very sensitive for dry powders because volatile impurities can be separated efficiently from matrix

Case Study 1: Routine analysis of residual solvent impurities

Case Study 2: Genotoxic impurities in a final drug product

Case Study 3: Chiral analysis during continuous manufacturing process
Profile Results

Case Study 1: Routine analysis of residual solvent impurities

Case Study 2: Genotoxic impurities in a final drug product

Case Study 3: Chiral analysis during continuous manufacturing process

Chloroethane resolved in complex mix
Quantitative Results

BrightSpec software directly determines analyte partial pressures in measurement chamber, which are converted to impurity mass in original sample.

<table>
<thead>
<tr>
<th></th>
<th>Chloroethane mass (w/w, ppm)</th>
<th>RSD (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot A</td>
<td>8.8</td>
<td>11%</td>
</tr>
<tr>
<td>Lot B</td>
<td>8.4</td>
<td>12%</td>
</tr>
<tr>
<td>Lot C</td>
<td>14.0</td>
<td>3%</td>
</tr>
<tr>
<td>MDL</td>
<td><0.1</td>
<td></td>
</tr>
</tbody>
</table>

Case Study 1: Routine analysis of residual solvent impurities
Case Study 2: Genotoxic impurities in a final drug product
Case Study 3: Chiral analysis during continuous manufacturing process
Chiral Analysis in Continuous Manufacturing

- Interest in continuous manufacturing of pharmaceuticals is growing rapidly

- In API synthesis, chirality is a critical attribute that is very challenging to measure – with no good method for automated, on-line analysis

- FT-MRR is unique in that even very subtle structural changes cause very clear differences in the spectrum

- In drugs with multiple chiral centers, unwanted side products may be diastereomers of the main product – giving different fingerprints in FT-MRR

- In the last few years, two methods have been developed to resolve enantiomers by FT-MRR:
 1) *3-wave mixing* (D. Patterson and J. Doyle, Harvard) – enantiomers produce radiation opposite in phase under particular conditions
 2) *Chiral tagging* (B.H. Pate, Univ. of Va.) – sample is complexed with a chiral resolving agent, producing structurally distinct species
Artemisinin

- Well known antimalarial (discovered by Tu Youyou, 2015 Nobel Prize in Medicine)
 Natural product originally isolated from a form of wormwood native to Asia, but now chemically synthesized
 Artemisinin combination therapy recommended for treatment of *P. falciparum* malaria

First target: Hydrogenation step creates a 5th chiral center and HPLC+NMR are currently used off-line to assess the reaction specificity after the fact. An on-line solution is desired.
Analysis Methods

1) Characterization of FT-MRR signatures of target analytes using broadband spectrometer

Confirmed identity of DHAA by measuring frequency shifts upon 13C isotopic substitution – detected at each position in natural abundance. (12 hour measurement time, ~100 mg sample)

(When less sample is available, comparisons between experimental and theoretical parameters are sufficient for ID.)

Data: Brooks Pate, Univ. of Va.

\[\textbf{DHAA computed 3-D structure with experimental carbon positions (small circles)} \]

\[\textbf{Line FWHM 70 kHz} \]
Analysis Methods

2) Cavity-enhanced spectrometer coupled to sampling manifold for rapid analysis

Current cycle time: 18 minutes limited by speed of thermal cycling, evacuation of reservoir between samples

First test case: conformer ratio in pure DHAA (set by beam dynamics)

Prototype design, based on spectrometer design of R.D. Suenram et al.

Connects to continuous manufacturing sample line directly – due to sample handling requirements does not take in sample continuously

Currently can detect down to 5% impurity, with work in progress to extend down to <1%

Case Study 1: Routine analysis of residual solvent impurities

Case Study 2: Genotoxic impurities in a final drug product

Case Study 3: Chiral analysis during continuous manufacturing process
Summary

FT-MRR is being applied to a range of problems in impurity characterization – both volatile residual impurities and chiral structural analysis (different instruments, same technique)

Advantages over other techniques include simpler method development and operation, straightforward resolution of complex mixtures - including isomers, and simple quantitation

Speed and ease of measurement, linearity of response, and quantitative accuracy are all on track to meet customer expectations

We are seeking collaborations on developing applications of FT-MRR in process R&D environments!
Thank You

Financial Support

Contact us:

Science: Justin Neill, CTO
justin.neill@brightspec.com

Corporate: Bob Lloyd, CEO
bob.lloyd@brightspec.com

770 Harris St, Suite 104b
Charlottesville, VA 22902
+1 (434) 202-2391

http://www.brightspec.com